Source code for perfectns.results_tables

#!/usr/bin/env python
"""
Functions used to generate results tables.

Used for results in 'Dynamic nested sampling: an improved algorithm for nested
sampling parameter estimation and evidence calculation' (Higson et al., 2019).
"""

import copy
import pandas as pd
import numpy as np
import nestcheck.io_utils as iou
import nestcheck.ns_run_utils
import nestcheck.error_analysis
import nestcheck.parallel_utils as pu
import nestcheck.pandas_functions as pf
import perfectns.nested_sampling as ns
import perfectns.priors as priors
import perfectns.estimators as e


[docs]@iou.timing_decorator def get_dynamic_results(n_run, dynamic_goals_in, estimator_list_in, settings_in, **kwargs): """ Generate data frame showing the standard deviations of the results of repeated calculations and efficiency gains (ratios of variances of results calculations) from different dynamic goals. To make the comparison fair, for dynamic nested sampling settings.n_samples_max is set to slightly below the mean number of samples used by standard nested sampling. This function was used for Tables 1, 2, 3 and 4, as well as to generate the results shown in figures 6 and 7 of 'Dynamic nested sampling: an improved algorithm for nested sampling parameter estimation and evidence calculation' (Higson et al., 2019). See the paper for a more detailed description. Parameters ---------- n_run: int how many runs to use dynamic_goals_in: list of floats which dynamic goals to test estimator_list_in: list of estimator objects settings_in: PerfectNSSettings object load: bool, optional should run data and results be loaded if available? save: bool, optional should run data and results be saved? overwrite_existing: bool, optional if a file exists already but we generate new run data, should we overwrite the existing file when saved? run_random_seeds: list, optional list of random seeds to use for generating runs. parallel: bool, optional cache_dir: str, optional Directory to use for caching. tuned_dynamic_ps: list of bools, same length as dynamic_goals_in, optional max_workers: int or None, optional Number of processes. If max_workers is None then concurrent.futures.ProcessPoolExecutor defaults to using the number of processors of the machine. N.B. If max_workers=None and running on supercomputer clusters with multiple nodes, this may default to the number of processors on a single node and therefore there will be no speedup from multiple nodes (must specify manually in this case). Returns ------- results: pandas data frame results data frame. Contains rows: mean [dynamic goal]: mean calculation result for standard nested sampling and dynamic nested sampling with each input dynamic goal. std [dynamic goal]: standard deviation of results for standard nested sampling and dynamic nested sampling with each input dynamic goal. gain [dynamic goal]: the efficiency gain (computational speedup) from dynamic nested sampling compared to standard nested sampling. This equals (variance of standard results) / (variance of dynamic results); see the dynamic nested sampling paper for more details. """ load = kwargs.pop('load', False) save = kwargs.pop('save', False) max_workers = kwargs.pop('max_workers', None) parallel = kwargs.pop('parallel', True) cache_dir = kwargs.pop('cache_dir', 'cache') overwrite_existing = kwargs.pop('overwrite_existing', True) run_random_seeds = kwargs.pop('run_random_seeds', list(range(n_run))) tuned_dynamic_ps = kwargs.pop('tuned_dynamic_ps', [False] * len(dynamic_goals_in)) assert len(tuned_dynamic_ps) == len(dynamic_goals_in) for goal in dynamic_goals_in: assert goal is not None, \ 'Goals should be dynamic - standard NS already included' # Add a standard nested sampling run for comparison: dynamic_goals = [None] + dynamic_goals_in tuned_dynamic_ps = [False] + tuned_dynamic_ps if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) # Make a copy of the input settings to stop us editing them settings = copy.deepcopy(settings_in) # make save_name save_root = 'dynamic_test' for dg in dynamic_goals_in: save_root += '_' + str(dg).replace('.', '_') save_root += '_' + settings.save_name(include_dg=False) save_root += '_' + str(n_run) + 'reps' save_file = cache_dir + '/' + save_root + '.pkl' # try loading results if load: try: return pd.read_pickle(save_file) except OSError: print('Could not load file: ' + save_file) # start function # -------------- # get info on the number of samples taken in each run as well estimator_list = [e.CountSamples()] + estimator_list_in est_names = [est.latex_name for est in estimator_list] method_names = [] method_values = [] assert dynamic_goals[0] is None, ( 'Need to start with standard ns to calculate efficiency gains') for i, dynamic_goal in enumerate(dynamic_goals): # set up settings settings.dynamic_goal = dynamic_goal settings.tuned_dynamic_p = tuned_dynamic_ps[i] # if we have already done the standard calculation, set n_samples_max # for dynamic calculations so it is slightly smaller than the number # of samples the standard calculation used to ensure a fair comparison # of performance. Otherwise dynamic nested sampling will end up using # more samples than standard nested sampling as it does not terminate # until after the number of samples is greater than n_samples_max. if i != 0 and settings.dynamic_goal is not None: assert dynamic_goals[0] is None assert isinstance(estimator_list[0], e.CountSamples) n_samples_max = np.mean(np.asarray([val[0] for val in method_values[0]])) # This factor is a function of the dynamic goal as typically # evidence calculations have longer additional threads than # parameter estimation calculations. reduce_factor = 1 - ((1.5 - 0.5 * settings.dynamic_goal) * (settings.nbatch / settings.nlive_const)) settings.n_samples_max = int(n_samples_max * reduce_factor) print('dynamic_goal=' + str(settings.dynamic_goal), 'n_samples_max=' + str(settings.n_samples_max)) # get a name for this calculation method if dynamic_goal is None: method_names.append('standard') else: method_names.append('dynamic $G=' + str(settings.dynamic_goal) + '$') if settings.tuned_dynamic_p is True: method_names[-1] += ' tuned' # generate runs and get results run_list = ns.get_run_data(settings, n_run, parallel=parallel, random_seeds=run_random_seeds, load=load, save=save, max_workers=max_workers, cache_dir=cache_dir, overwrite_existing=overwrite_existing) method_values.append(pu.parallel_apply( nestcheck.ns_run_utils.run_estimators, run_list, func_args=(estimator_list,), max_workers=max_workers, parallel=parallel)) results = pf.efficiency_gain_df(method_names, method_values, est_names) if save: # save the results data frame print('get_dynamic_results: saving results to\n' + save_file) results.to_pickle(save_file) return results
[docs]@iou.timing_decorator def merged_dynamic_results(dim_scale_list, likelihood_list, settings, estimator_list, **kwargs): """ Wrapper for running get_dynamic_results for many different likelihood, dimension and prior scales, and merging the output into a single data frame. See get_dynamic_results doccumentation for more details. Parameters ---------- dim_scale_list: list of tuples (dim, prior_scale) pairs to run likelihood_list: list of likelihood objects settings_in: PerfectNSSettings object estimator_list: list of estimator objects n_run: int, optional number of runs for use with each setting. dynamic_goals_in: list of floats, optional which dynamic goals to test (remaining kwargs passed to get_dynamic_results) Returns ------- results: pandas data frame """ dynamic_goals = kwargs.pop('dynamic_goals', [0, 1]) load = kwargs.pop('load', True) # ensure default True for merged results save = kwargs.pop('save', True) # ensure default True for merged results n_run = kwargs.pop('n_run', 1000) results_list = [] for likelihood in likelihood_list: for n_dim, prior_scale in dim_scale_list: settings.n_dim = n_dim settings.likelihood = likelihood if n_dim >= 50: settings.prior = priors.GaussianCached(prior_scale=prior_scale) else: settings.prior = priors.Gaussian(prior_scale=prior_scale) like_lab = (type(settings.likelihood).__name__ .replace('ExpPower', 'Exp Power')) if type(settings.likelihood).__name__ == 'ExpPower': like_lab += (', $b=' + str(settings.likelihood.power) .replace('0.75', r'\frac{3}{4}') + '$') print(like_lab, 'd=' + str(n_dim), 'prior_scale=' + str(prior_scale)) df_temp = get_dynamic_results( n_run, dynamic_goals, estimator_list, settings, save=save, load=load, **kwargs) new_inds = ['likelihood', 'dimension $d$', r'$\sigma_\pi$'] df_temp[new_inds[0]] = like_lab df_temp[new_inds[1]] = settings.n_dim df_temp[new_inds[2]] = settings.prior.prior_scale order = new_inds + list(df_temp.index.names) df_temp.set_index(new_inds, drop=True, append=True, inplace=True) df_temp = df_temp.reorder_levels(order) results_list.append(df_temp) results = pd.concat(results_list) return results
[docs]@iou.timing_decorator def get_bootstrap_results(n_run, n_simulate, estimator_list, settings, **kwargs): """ Generate data frame showing the standard deviations of the results of repeated calculations and estimated sampling errors from bootstrap resampling. This function was used for Table 5 in 'Dynamic nested sampling: an improved algorithm for nested sampling parameter estimation and evidence calculation' (Higson et al., 2019). See the paper for more details. Parameters ---------- n_run: int how many runs to use n_simulate: int how many times to resample the nested sampling run in each bootstrap standard deviation estimate. estimator_list: list of estimator objects settings: PerfectNSSettings object load: bool, optional should run data and results be loaded if available? save: bool, optional should run data and results be saved? parallel: bool, optional cache_dir: str, optional Directory to use for caching. add_sim_method: bool, optional should we also calculate standard deviations using the simulated weights method for comparison with bootstrap resampling? This method is inaccurate for parameter estimation. n_simulate_ci: int, optional how many times to resample the nested sampling run in each bootstrap credible interval estimate. These may require more simulations than the standard deviation estimate. run_random_seeds: list, optional list of random seeds to use for generating runs. n_run_ci: int, optional how many runs to use for each credible interval estimate. You may want to set this to lower than n_run if n_simulate_ci is large as otherwise the credible interval estimate may take a long time. cred_int: float, optional one-tailed credible interval to calculate max_workers: int or None, optional Number of processes. If max_workers is None then concurrent.futures.ProcessPoolExecutor defaults to using the number of processors of the machine. N.B. If max_workers=None and running on supercomputer clusters with multiple nodes, this may default to the number of processors on a single node and therefore there will be no speedup from multiple nodes (must specify manually in this case). Returns ------- results: pandas data frame results data frame. Contains two columns for each estimator - the second column (with '_unc' appended to the title) shows the numerical uncertainty in the first column. Contains rows: true values: analytical values of estimators for this likelihood and posterior if available repeats mean: mean calculation result repeats std: standard deviation of calculation results bs std / repeats std: mean bootstrap standard deviation estimate as a fraction of the standard deviation of repeated results. bs estimate % variation: standard deviation of bootstrap estimates as a percentage of the mean estimate. [only if add sim method is True]: sim std / repeats std: as for 'bs std / repeats std' but with simulation method standard deviation estimates. sim estimate % variation: as for 'bs estimate % variation' but with simulation method standard deviation estimates. bs [cred_int] CI: mean bootstrap credible interval estimate. bs +-1std % coverage: % of calculation results falling within +- 1 mean bootstrap standard deviation estimate of the mean. bs [cred_int] CI % coverage: % of calculation results which are less than the mean bootstrap credible interval estimate. """ load = kwargs.pop('load', False) save = kwargs.pop('save', False) max_workers = kwargs.pop('max_workers', None) ninit_sep = kwargs.pop('ninit_sep', True) parallel = kwargs.pop('parallel', True) cache_dir = kwargs.pop('cache_dir', 'cache') add_sim_method = kwargs.pop('add_sim_method', False) n_simulate_ci = kwargs.pop('n_simulate_ci', n_simulate) n_run_ci = kwargs.pop('n_run_ci', n_run) cred_int = kwargs.pop('cred_int', 0.95) run_random_seeds = kwargs.pop('run_random_seeds', list(range(n_run))) if kwargs: raise TypeError('Unexpected **kwargs: {0}'.format(kwargs)) # make save_name save_root = ('bootstrap_results_' + str(n_simulate) + 'nsim_' + str(ninit_sep) + 'sep') save_root += '_' + settings.save_name() save_root += '_' + str(n_run) + 'reps' save_file = cache_dir + '/' + save_root + '.pkl' # try loading results if load: try: return pd.read_pickle(save_file) except OSError: pass # start function est_names = [est.latex_name for est in estimator_list] # generate runs run_list = ns.get_run_data(settings, n_run, save=save, load=load, random_seeds=run_random_seeds, cache_dir=cache_dir, max_workers=max_workers, parallel=parallel) # sort in order of random seeds. This makes credible intervals results # reproducable even when only the first section of run_list is used. run_list = sorted(run_list, key=lambda r: r['random_seed']) rep_values = pu.parallel_apply( nestcheck.ns_run_utils.run_estimators, run_list, func_args=(estimator_list,), max_workers=max_workers, parallel=parallel) results = pf.summary_df_from_list(rep_values, est_names) new_index = ['repeats ' + results.index.get_level_values('calculation type'), results.index.get_level_values('result type')] results.set_index(new_index, inplace=True) results.index.rename('calculation type', level=0, inplace=True) # get bootstrap std estimate bs_values = pu.parallel_apply( nestcheck.error_analysis.run_std_bootstrap, run_list, func_args=(estimator_list,), func_kwargs={'n_simulate': n_simulate}, max_workers=max_workers, parallel=parallel) bs_df = pf.summary_df_from_list(bs_values, est_names) # Get the mean bootstrap std estimate as a fraction of the std measured # from repeated calculations. results.loc[('bs std / repeats std', 'value'), :] = \ (bs_df.loc[('mean', 'value')] / results.loc[('repeats std', 'value')]) bs_std_ratio_unc = pf.array_ratio_std( bs_df.loc[('mean', 'value')], bs_df.loc[('mean', 'uncertainty')], results.loc[('repeats std', 'value')], results.loc[('repeats std', 'uncertainty')]) results.loc[('bs std / repeats std', 'uncertainty'), :] = \ bs_std_ratio_unc # Get the fractional variation of std estimates # multiply by 100 to express as a percentage results.loc[('bs estimate % variation', 'value'), :] = \ 100 * bs_df.loc[('std', 'value')] / bs_df.loc[('mean', 'value')] results.loc[('bs estimate % variation', 'uncertainty'), :] = \ 100 * bs_df.loc[('std', 'uncertainty')] / bs_df.loc[('mean', 'value')] if add_sim_method: # get std from simulation estimate sim_values = pu.parallel_apply( nestcheck.error_analysis.run_std_simulate, run_list, func_args=(estimator_list,), func_kwargs={'n_simulate': n_simulate}, max_workers=max_workers, parallel=parallel) sim_df = pf.summary_df_from_list(sim_values, est_names) # Get the mean simulation std estimate as a fraction of the std # measured from repeated calculations. results.loc[('sim std / repeats std', 'value'), :] = \ (sim_df.loc[('mean', 'value')] / results.loc[('repeats std', 'value')]) sim_std_ratio_unc = pf.array_ratio_std( sim_df.loc[('mean', 'value')], sim_df.loc[('mean', 'uncertainty')], results.loc[('repeats std', 'value')], results.loc[('repeats std', 'uncertainty')]) results.loc[('sim std / repeats std', 'uncertainty'), :] = \ sim_std_ratio_unc # Get the fractional variation of std estimates # Multiply by 100 to express as a percentage results.loc[('sim estimate % variation', 'value'), :] = \ 100 * sim_df.loc[('std', 'value')] / sim_df.loc[('mean', 'value')] results.loc[('sim estimate % variation', 'uncertainty'), :] = \ (100 * sim_df.loc[('std', 'uncertainty')] / sim_df.loc[('mean', 'value')]) # get bootstrap CI estimates bs_cis = pu.parallel_apply( nestcheck.error_analysis.run_ci_bootstrap, run_list[:n_run_ci], func_args=(estimator_list,), func_kwargs={'n_simulate': n_simulate_ci, 'cred_int': cred_int, 'random_seeds': range(n_simulate_ci)}, max_workers=max_workers, parallel=parallel) bs_ci_df = pf.summary_df_from_list(bs_cis, est_names) results.loc[('bs ' + str(cred_int) + ' CI', 'value'), :] = \ bs_ci_df.loc[('mean', 'value')] results.loc[('bs ' + str(cred_int) + ' CI', 'uncertainty'), :] = \ bs_ci_df.loc[('mean', 'uncertainty')] # add coverage for +- 1 bootstrap std estimate max_value = (results.loc[('repeats mean', 'value')].values + bs_df.loc[('mean', 'value')].values) min_value = (results.loc[('repeats mean', 'value')].values - bs_df.loc[('mean', 'value')].values) rep_values_array = np.stack(rep_values, axis=1) assert rep_values_array.shape == (len(estimator_list), n_run) coverage = np.zeros(rep_values_array.shape[0]) for i, _ in enumerate(coverage): ind = np.where((rep_values_array[i, :] > min_value[i]) & (rep_values_array[i, :] < max_value[i])) coverage[i] = ind[0].shape[0] / rep_values_array.shape[1] # multiply by 100 to express as a percentage results.loc[('bs +-1std % coverage', 'value'), :] = coverage * 100 # add credible interval coverage max_value = results.loc[('bs ' + str(cred_int) + ' CI', 'value')].values ci_coverage = np.zeros(len(estimator_list)) for i, _ in enumerate(coverage): ind = np.where(rep_values_array[i, :] < max_value[i]) ci_coverage[i] = ind[0].shape[0] / rep_values_array.shape[1] # multiply by 100 to express as a percentage results.loc[('bs ' + str(cred_int) + ' CI % coverage', 'value'), :] = \ (ci_coverage * 100) if save: # save the results data frame print('get_bootstrap_results: results saved to\n' + save_file) results.to_pickle(save_file) return results